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SSK: Robotic Pen-Art System for
Large, Non-Planar Canvas
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Abstract—We present a semi-autonomous robotic pen-drawing
system, called SSK, that is capable of creating pen art on
a large nonplanar surface. Our robotic system relies on a
seven-degree-of-freedom impedance-controlled manipulator with
a three-degree-of-freedom holonomic mobile platform. We use a
vector-graphics engine to take an artist’s pen drawing as input,
and we generate Bézier spline curves to be drawn on the given
target drawing canvas. Then, our system finds a set of minimal,
discrete configurations for the mobile platform to cover the entire
canvas surface while considering the reachability of the manipu-
lator. The drawing is split into multiple sub-drawings according
to the found configurations. Our system replicates the spline
drawing on the target surface using impedance control, which
enables us to compensate for the uncertainty and incompleteness
inherent to canvas-surface representations and various robotic
and sensor noises. We demonstrate that our system can create
visually pleasing and complicated pen art on large, nonplanar
surfaces.

Index Terms—Computational geometry, mobile manipulation,
motion and path planning robotic art.

I. INTRODUCTION

S INCE the Renaissance, artists have incorporated machines
and new technologies into artistic installations and perfor-

mances to go beyond conventional art forms. Many contempo-
rary artists are radically expanding the possibilities of creative
expression using new media and mechanisms, and robots are
increasingly becoming one of the mechanisms [1], [2], [3],
[4]. In accordance with the recent impressive development of
robotics technology, “robotic art” is becoming popular both
for artists and roboticists.

The robotic art community has presented many fully-
autonomous or semi-autonomous robotic drawing systems in
the past [5]. However, creating an autonomous robotic drawing
system is just as difficult as creating any autonomous robotic
system because it requires robust components of control,
sensing, planning, and human-robot interfacing. What makes
the matter more challenging is that the artistic nature of robotic
art requires the interdisciplinary participation of, for instance,
art and computer graphics technology, in addition to general
robotic technology.

In order for the robots to reproduce an artistic workpiece,
robots not only need to determine a sequence of drawing
strokes, but also need to plan the proper motions to realize
the sequence. Non-photorealistic rendering (NPR) techniques
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Fig. 1. Presented robotic pen-art system drawing artwork on a large, nonplanar
canvas in the real-world (top) and in simulation (bottom).

in computer graphics may provide some clues as to how to
convert digital images into painterly or sketchy strokes that can
be executed by machines [6], [7]. In addition, vector-graphics
images [8], unlike raster images, naturally provide drawing
sequences or paths for the robot. After the drawing sequences
and paths are decided, the robot can perform drawing by
following the path.

The robotic pen-art system imposes many new challenges,
unlike robotic painting. For instance, robotic pen art requires
that the robot maintain constant contact with the target drawing
surface to draw the path; this is known to be a difficult
task, especially in the presence of uncertainty [9]. Impedance
control, an approach for controlling the relationship between
the force and the position, has become a popular choice for
contact-intensive tasks [10], because it can deal with position
uncertainties and adjust the robot’s compliance according to
the external force [11].

Meanwhile, most of the existing artistic robot-drawing
systems are limited to the planar canvas. Drawing on a
nonplanar canvas requires mapping the 2-D drawing path to
a 3-D path on the target canvas surface without introducing
visual artifacts. Thus, a reliable and distortion-free method is
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required to map between the 2-D drawing-path space and the
3-D canvas space. This 2-D-3-D mapping problem has been
widely studied in computer graphics, particularly in the texture
mapping domain [12]. Least squares conformable mapping
(LSCM) [13] is a well-known distortion-free mapping method,
particularly for preserving angle distortion.

Finally, the reachability of a robotic manipulator can limit
the size of the drawing canvas. The use of a mobile manip-
ulator is a natural choice to address this problem. However,
adopting such a platform brings the additional challenge of
navigation planning to the system. More precisely, the system
will need proper “coverage planning” for the mobile manipu-
lator to be able to cover the large drawing canvas. Finding the
path for a mobile manipulator with a high degree of freedom
(DoF) to cover a 3-D surface can be computationally very
expensive (e.g., NP-hard [14]).

A. Main Results

In this article, we present a robotic pen-art system, called
SSK, that is capable of creating artistic pen art on a large,
nonplanar surface (Fig. 1). We process the user’s 2-D drawing
through our vector-graphics engine to generate the input,
which will later be translated into a drawing path. In order
to map the 2-D drawing path onto the 3-D surface with
minimal distortion, we apply LSCM. We also introduce a
new coverage planning method for the mobile platform that
enables our system to draw on a canvas whose size is larger
than the manipulator’s reachability when its base frame is
fixed. In order to solve the large canvas drawing problem, we
reformulate it as a combinatorial optimization problem that
finds the minimum number of mobile base configurations that
can cover the entire target drawing path, and we solve it using
a greedy algorithm. Then, for each of the base configurations,
we perform the robotic drawing task on a subset of the target
canvas. We use impedance control to draw on a nonplanar
canvas, which can also compensate for various error sources,
such as the geometric uncertainties of the nonplanar canvas
surface and the robot’s localization error. We carry out a
variety of drawing experiments to show that our system can
create visually pleasing and complicated pen art on large,
nonplanar surfaces. We also demonstrate that our robotic
drawing system is robust to different sources of modeling,
sensing, and localization errors.

The rest of this paper is organized as follows. We survey
works relevant to the robotic drawing system in Section II.
Then, we outline an overview of the system architecture in
Section III. We propose our drawing input generation method
using a vector graphics engine in Section IV. The details of
mapping the produced 2-D drawing path onto the target 3-
D surface are elaborated in Section V. A detailed descrip-
tion of planning the large canvas drawing task is presented
in Section VI, and robotic curve rendering is presented in
Section VII. We show our implementation results and discuss
them in Section VIII. Finally, we conclude the paper in
Section IX.

Preliminary versions of this paper have appeared in such
conferences as [15] and [16]. Based on these versions, we

extend our previous robotic drawing system to cope with a
large canvas using a mobile manipulator in this article. We
efficiently solve the coverage problem using pre-computed
manipulator coverage maps and a greedy algorithm. We also
provide new experimental results for robotic drawing on large,
nonplanar surfaces using our improved system; we discuss the
results, including error analysis, more extensively compared
than we did in the preliminary versions.

II. PREVIOUS WORK

A. Robotic Curve Rendering

The early work on creating drawing machines can be
attributed to artistic work by Jean Tinguely and Harold Cohens
Aaron [17]. In the computer graphics and robotics community,
early attempts to create drawing robots were largely based
on a plotter-type, special-purposed machine. More recently,
research efforts have been applied to using a high-DoF general
robot or manipulator for robotic drawing that can span a wide
spectrum of artistic expressions.

There was an attempt to follow human-characteristic
styles to draw human portraits using the HOAP-2 humanoid
robot [2]. Paul the robot [4] is a robotic installation that creates
observational portrait drawings that mimic an artist’s stylistic
signatures. The PumaPaint project [18] is a telerobotic painting
robot that allows online users to draw paintings remotely using
a PUMA robot. e-David [3] is a modified, industrial robot
that can create a wide variety of painting styles from an
image input. It relies on visual feedback to generate NPR-
type painterly results, and has been extended to generate sets
of shapes by analyzing various artist styles using region-
based approach [19]. Busker Robot [20], [21] is a robotic
painting system that paints watercolor artworks using NPR
techniques, and it has been extended to create artworks using
the palette knife techniques [22]. The authors also proposed
a human-robot interaction architecture to draw an artistic
drawing using an eye-tracking interface [23]. In drozBot [24],
they formulated the drawing problem as a coverage problem
and solved it using an ergodic control algorithm. This approach
is similar to ours, only that we consider the larger coverage
problem using a mobile manipulator.

Recently, with the development of machine learning tech-
nology, reinforcement learning that enables the painting agent
to learn where to place the brush strokes has been studied [25].
Cloudpainter [26] took advantage of the machine learning style
transfer method to apply the visual style of a source image
to a target image. There is also a robotic pencil sketching
system that uses neural style transfer technology to extract the
content and style features and generate a new artwork [27].
The authors used a closed-loop force control to compensate
for the pencil wear.

Although most of the research focuses on creating a drawing
on a limited space of the flat canvas, there was recently an
attempt to draw a pen drawing on a 3-D surface using closed-
loop planning and vision-force feedback [28]. However, none
of the existing works dealt with creating a pen drawing on a
large, nonplanar surface using a mobile manipulator.
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B. Vector Graphics

For the robotic drawing system, vector graphics are more
suitable than raster graphics, as vector graphics can generate
continuous and smooth pen strokes that can be mapped nicely
to smooth robotic motions. Vector graphics typically fill pix-
els inside implicitly-defined curves of a certain width using
CPU-based scanline methods [29], [30], [31]. Because vector
graphics techniques need to render implicit curves in every
frame, the performance of CPU-based rendering methods is
slow on the dense screen resolution used by modern display
devices.

Loop and Blinn suggested a GPU-based fast resolution-
independent rendering method that could render paths and
bounded regions [32]. Kilgard and Bolz introduced a fast
GPU-based, two-step approach, namely the stencil-and-cover
approach [33]. The stencil step determines the stroke path’s
fill coverage, and the cover step fills the area determined by
the stencil step. There exists no vector-graphics method that
can adequately reproduce human drawing consisting of free-
form lines and curves, even though smooth curve rendering or
retrieving methods, such as in [32], [34], [35] and [36], may
handle human drawings to some degree.

C. Distortion-Free Surface Parameterization

The automatic parameterization of a non-parametric surface,
like polygonal or point-set surfaces, is a non-trivial problem;
it has been extensively studied in geometric modeling, and
processing [37], [38]. Typical applications of parameteriza-
tion include texture mapping in computer graphics and mesh
editing and re-meshing in geometric processing. In particular,
the former application is closely related to our problem, where
a curved drawing in 2-D should be faithfully reproduced on a
curved or bumpy surface in 3-D.

For a polygonal surface with a disk-like topology and a
convex boundary, barycentric mapping [39] is the most com-
monly used method in the literature. However, this method can
induce serious distortion in parameterization if the boundary
is highly non-convex. To cope with this problem, conformal
mapping based on complex analysis has been introduced. At a
high level, conformal mapping can be classified into analytic
and geometric methods [38]. The former is relatively easy
to implement using energy minimization [13] but can suffer
from unbalanced distortion if the underlying surface has a high
Gaussian curvature, whereas the latter can resolve this issue
[40].

D. Mobile Base Placement

In order to extend our robotic drawing system to draw on
larger spaces, we need to incorporate the problem of finding a
proper robot base position. Such a problem has been studied
in many robotic fields that require accomplishing the task in
a larger area than the robot’s reachability, e.g., spray-painting
robots, agriculture robots, and inspection robots. In [41], the
authors present a two-step search algorithm for determining
the nearly optimal base position for a mobile painting manip-
ulator. In [42], they propose a method to find the optimum

robot configurations while minimizing the number of mobile
base movements and changes in manipulator configurations
using the genetic algorithm. In [43], the authors consider the
shape of the local workspace of a planar cable-suspended robot
and evaluate the efficiency [44].

Although the prior methods can be applied in our system,
since optimality is not our main concern, we approximate the
problem using a simple geometric set-cover problem to solve
it within a few seconds.

E. Impedance-Controlled Robot

Impedance control for controlling the interaction between
a manipulator and the surrounding environment was first
suggested in [45]. Since then, robot interaction techniques
that use impedance control have been explored in the robotics
community [46], [47]. The popularity of the use of impedance
control is partly due to the demand for robotic systems with
the ability to interact with uncertain environments in practical
applications. Thus, many collaborative robots that are designed
with impedance control have been introduced in both industry
and academia, for instance, LBR iiwa from KUKA Robotics,
Baxter and Sawyer from Rethink Robotics, and Justin from
DLR. These robots are able to perform classically challenging
robotic manipulation such as peg-in-hole assembly. Impedance
control can also be used for unscrewing a jar lid, as done
by the humanoid robot Justin [48], as well as bimanual tasks
[49]. Impedance control in drawing was first introduced in
our previous work [15], and it was used for compensating the
uncertainty imposed by sensor noise and numerical noise in
surface estimation.

III. SYSTEM OVERVIEW

In this section, we present an overview of our system and
the notation that is used in the paper. As illustrated in Fig. 2,
we present a system overview of our robotic drawing system
and how to render a drawing on a nonplanar surface using
robotic hardware. Our robotic hardware, consisting of a robotic
manipulator placed on top of a mobile platform, is shown in
Fig. 1. For convenience, we refer to a set of two robots as a
robot. When referring to a specific robot, it is called either a
manipulator or a mobile platform/base. Table I defines all the
notations introduced in the paper.

The input drawing of our system consists of a sequence of
points, D ⊂ R2, that define quadratic Bézier curve patches. In
Section IV, we introduce a method for generating a drawing
path that is drawn by artists using tablet-like pen interfaces. In
order to create this 2-D drawing on a nonplanar 3-D surface
with the least amount of distortion, we present a distortion-
free conformal mapping method in Section V. Given the target
surface data S ⊂ R3 in a point cloud or mesh format, we
estimate the normal vector for each point in S. The normal
vector is used for conformal mapping as well as for deciding
the orientation of the robot’s end-effector. During the mapping
process, the set of surface points is parameterized into a
parametric domain, ψ : S ⊂ R3 → Ω ⊂ R2. The original
input drawing defined by D is made to fit within the domain
of Ω, and its corresponding parameters of the drawing points
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Fig. 2. System Overview. Given (or after obtaining) the 2-D drawing input D and the 3-D target drawing surface data S, (a) the drawing is mapped onto the
surface using least squares conformal mapping (LSCM), and (b) the surface coverage path is planned from the solution to our simplified drawing coverage
problem. (c) The drawing is rendered on a target 3-D surface using robotic hardware.

TABLE I
TABLE OF NOTATION

Notation Description

D ⊂ R2 point set defining 2D drawing
S ⊂ R3 point set defining 3D target surface
S′ ⊂ R2 point set with only x and y values in S
Ω ⊂ R2 surface point set in parametric domain for mapping
D′ ⊂ SE(3) drawing pose set mapped onto target surface
Ci coverage circle of the manipulator
Bi bounding circle of the mobile base platform
Xj covered surface point sets
Pj target mobile platform poses

are found by inverse-mapping Ω to S. We get the drawing
to pose set D′ ⊂ SE(3) mapped onto the target surface as
a result. This conformal mapping process can be replaced by
other mapping methods (e.g., projective texture mapping) for
which the drawing distortion is tolerable.

As our robotic hardware is not limited to its drawing canvas
size, our system is capable of drawing a large drawing on
a large canvas space. Therefore, we need to plan a set of
robot configurations that can reach the given drawing path.
In order to solve this problem, we approximate and simplify
the problem by introducing the term coverage in Section VI.
Instead of finding the continuous robot configurations with
the high degrees of freedom, we find a discrete set of robot
coverage that covers the entire drawing path. The drawing is
then split into multiple sub-drawings according to the found
set of coverage.

Then, the manipulator performs the robotic curve rendering
for each sub-drawing using impedance control. Impedance
control enables our system to compensate for the possible
errors induced by surface estimation and calibration. We repeat
the manipulator’s robotic curve rendering task and move the
mobile base to the next pose until it finishes the entire drawing
task.

IV. DRAWING INPUT GENERATION

In this section, we introduce a method to generate a 2-
D robotic drawing path for our system. We take an artist’s
pen drawing as input using a vector graphics engine. Raster
images, which consist of a discrete set of pixels, cannot be
directly applied to robot motions, which require a set of
continuous vectors. On the other hand, our vector graphics
engine generates a sequence of continuous vectors that can be
mapped to the manipulator’s continuous motion.

A. Vector Graphics Engine

The vector graphics engine receives input points from
pen-ready devices, such as tablet devices or mobile phones
(Fig. 9(a)). The stylus pen generates two-dimensional points
along with the corresponding pen pressure. We convert these
input points and pressures into vector graphics output, preview
them by rendering them, and provide them to a robotic
manipulator to physically recreate the drawing on an arbitrary
surface. The process can be represented by the following steps:

1) We filter out useless input points to reduce the size
of the data, as illustrated in Fig. 3(b). Existing tablet-
based pen-input devices typically produce sixty points
per second, and these points may contain many useless
and noisy points; e.g., many co-linear points on a straight
line. During filtering, we also need to consider the input
pressure values to retain the variation in line thickness.
To do this, we apply a median filter with a narrow range,
say five points per one filtering step, to filter out the
redundant points along a straight line. In this step, many
co-linear points will be eliminated. Then, we apply the
bilateral filter to the filtered result. Due to the nature of
the bilateral filtering method, points located near the crest
of successive input points survive as shown in Fig. 3(b).

2) We calculate the mid-points of all successive input points.
3) We choose an input point as well as its two adjacent

mid-points, calculated from the first step, to constitute
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(a) Input points (b) Filtered points

(c) Mid-points generation (red) (d) Offset points generation for pen
thickness

Fig. 3. Four steps for generating triangle polygon from input points for GPU-
based vector graphics rendering.

three control points to define a single Bézier curve. This
construction yields the C1 continuity of the entire spline
curve.

4) To render a curve with varying thickness (or offset), de-
termined by the pen pressure, we triangulate the bounded
areas, as illustrated in Fig. 3(d).

The robotic curve drawing requires the results of step 3,
which are a set of quadratic Bézier curves with C1 continuity
and pressures. Additionally, in order to match the input re-
quired by our robotic hardware to operate the spline block
motion, we use de Casteljau’s algorithm to find a set of
drawing points D ⊂ R2 that passes the curve. Optionally,
to preview the curve rendering with the tablet device before
sending the input to the robot, we use the triangles of step 4
and render them using resolution-independent curve rendering,
such as that in [32].

Although we provide an interface to generate a drawing
from the user input, any kind of vectorized 2-D strokes can
be used for the robotic curve rendering by our system.

V. DRAWING FROM 2-D TO 3-D

In order to reproduce a 2-D drawing on a 3-D arbitrary
surface using robotic motions, one needs to decide the depth
for each drawing point D. Given a target surface point set
S ⊂ R3, either as raw point clouds or as a computer-aided
design (CAD) software-generated mesh, the surface can be
unfolded into a 2-D space. The depth of each drawing point
can be decided simply by finding the correspondence between
the drawing points and the unfolded 2-D surface, and then
packing the correspondence back into 3-D space. There exist
many different parameterization methods to unfold the surface,
including the simplest one, which is projection mapping. To
reproduce the drawing without severe distortion, one can
employ conformal mapping. In other words, we can preserve
the quality of the original 2-D drawing during mapping from
a 2-D digital vector drawing to a robotic drawing on a 3-
D surface by minimizing the angle distortion of the local
geometry. As a result, we obtain a distortion-free drawing

result regardless of whether the drawing is executed on a large,
small, stretched, or shrunken surface.

A. Conformal Mapping

Before explaining our idea of conformal mapping, we first
introduce some theoretical background about conformal map-
ping. Given two surfaces with similar topology, it is possible
to compute a one-to-one correspondence between them [37].
The problem of computing such a mapping is referred to as
surface parameterization.

Conformal mapping is one of the surface parameterization
techniques that preserves both angles and shapes. Let a con-
tinuous surface S ⊂ R3 be parameterized into the parametric
domain Ω ⊂ R2. As illustrated in Fig. 4, a function ψ that is
a mapping from 3-D surface S to the Ω domain in 2-D is said
to be conformal if, for each (u, v) ∈ Ω, the tangent vectors
along the horizontal and vertical lines (the red and blue lines
in Fig. 4), which form a regular grid, are orthogonal on S and
have the same norm [38]:

a = n× b, (1)

where a and b denote the tangent vectors and n denotes the
unit normal at (x, y, z) ∈ S. In other words, a conformal
mapping locally corresponds to a similarity transform. It trans-
forms an elementary circle on the surface to an elementary
circle in the (u, v) domain.

B. Surface Drawing with Minimal Distortion

To realize conformal mapping in our work, we adopt LSCM
[13] to parameterize the target surface. Although LSCM
is applicable to non-developable surfaces, we only consider
surfaces that do not require cutting to be unfolded into a 2-
D parametric domain. After we unfold the target surface into
the 2-D parameter space (u, v) ∈ Ω, we search for the proper
parameter values of the 2-D drawing data in the parameter
space and refold the surface into 3-D space. We choose to
compute the gradients using a local orthonormal basis of
triangles, which requires that the surface be reconstructed as
a triangular mesh. Alternatively, one could use a meshless
technique for the conformal mapping of a point cloud without
surface reconstruction by using the Laplace-Beltrami (LB)
operator [50]. Both results would yield a set of coordinates
(ui, vi) ∈ Ω associated with each point in P that satisfies

Fig. 4. Least squares conformal mapping (LSCM). 3-D target surface data
S in point cloud (left) and its parameterized representation Ω (right).
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Fig. 5. Surface data in S (left) and Ω (right). The blue points represent
the sparse surface points (point clouds or mesh), which have a corresponding
point between S and Ω. The red solid point is a 2-D drawing point for which
we want to estimate the depth. The four nearest neighbor points used for bi-
linear interpolation are highlighted in red outline.

Eq. 1. In our implementation, we have chosen the meshing
technique, as robust surface meshing implementations are
readily available in [51], and as the meshing technique can
be applied to both types of surface input, raw point clouds,
and meshes.

After the surface parameterization ψ is complete, we need
to decide the proper parameter coordinates for the drawing
points set D. Because our target surface data set S is an
unorganized/sparse point set and does not necessarily form a
uniform grid, in order to parameterize every drawing point
to a corresponding (u, v) coordinate, we need to perform
an estimation. Note that this is not a significant challenge
for raster-based texture mapping, as one can obtain a clear
idea of which rasterized point on the surface needs to be
parameterized. On the other hand, in our case, there is no
guarantee that all the drawing points in D can be mapped to
the parametrized surface points in Ω. To solve this inverse
mapping problem, we simply perform bi-linear interpolation
in the parametric domain to estimate the (u, v) coordinates for
D as follows.

Given a desired drawing space S and a corresponding
parameterized space Ω, surface data are stored in a quadtree
data structure. Along with the desired drawing scale, we
compute the parametric scale in Ω and fit the 2-D drawing
to Ω. Then, for each drawing point di ∈ D, we search for the
four-nearest points in Ω that form a quadrilateral (Fig. 5). By
performing bi-linear interpolation on this quadrilateral, we can
parameterize the di that is mapped to both the position pi and
the surface normal ni on S. Finally, a set of drawing points
mapped to the target surface with the corresponding surface
orientations is generated.

D′ = {⟨pi, ri⟩|pi ∈ R3, ri ∈ SO(3)}. (2)

Thus far, we have assumed that every position and ori-
entation is calculated in the WORLD reference frame
(i.e., pWORLD

i , rWORLD
i ), where we omit the indication for

convenience.

VI. LARGE CANVAS DRAWING

Our system is not limited to the target drawing canvas size,
as the robotic platform can move around freely. In particular,
if the input drawing requires a large canvas, the manipulator

will not be able to draw the whole drawing in one fixed place.
Therefore, we need to find a set of robot configurations that
can reach the given drawing path.

A. Problem Formulation

The objective of the large canvas problem is to find a path,
ξ, for the robot that allows the manipulator to reach the given
drawing path, D′. This problem can be formally defined as
follows:

Problem 1 (Drawing Coverage): Find a path ξ defined in
the robot’s configuration space1 C such that the end-effector
of the robot following ξ is able to cover every drawing pose
in the drawing path D′ in Eq. 2. In other words,

D′ ⊂
⋃

∀q∈ξ

F(q), (3)

where F is the forward kinematics map from C to SE(3).
In general, finding ξ in Problem 1 with a high degrees-of-
freedom robot is difficult. Adding a constraint or an objective
would make the problem even more difficult. Thus, we refor-
mulate the problem based on the notion of path coverage.

First, we define the robot’s reachability and coverage as
follows:

Definition 1 (Reachability): Given a robot R with its
forward kinematics map FR, the reachability LR(c) for a
configuration c ∈ SE(3) is defined as a mapping from SE(3)
to {0, 1} that indicates whether FR(q) = c for ∃q ∈ C (1) or
not (0).

Definition 2 (Coverage): The coverage C for a robot R with
reachability LR is defined as a set of points that are reachable
by the end-effector of the robot. In other words,

C = {∀p ∈ R3 | ∃q ∈ C,∃r ∈ SO(3),LR(q)(⟨p, r⟩) = 1},
(4)

where R(q) represents the robot placed in a configuration q.
Note that when q is bounded, C is compact. Then, instead of
solving Problem 1 exactly, we first discretize the drawing path
D′ with a finite set of points S, and we solve the following
coverage problem to approximate Problem 1:

Problem 2 (Path Coverage): Given a finite point set S in 3-
D that approximates the target drawing path D′, find a minimal
number of compact sets Ci such that their union includes S:

min

{
n | S ⊂

n⋃
i=1

Ci

}
, (5)

where each Ci denotes a subset of the robot’s coverage C as
defined by Definition 2.

While Problem 2 approximates the drawing coverage of
Problem 1, it still requires complicated geometric and combi-
natorial optimization. Thus, we further simplify the problem
by restricting each compact set Ci to be a simple geometric
primitive in R3, such as a sphere, and pre-computing it using
the coverage of the robot. Furthermore, we use randomization
to reduce the universe of {Ci} and rely on greedy-based com-
binatorial optimization to solve Problem 2. After a solution
to Problem 3 is obtained, we use simple local planning to

1In our case, C = SE(2)× R7
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(a) (b)

Fig. 6. Coverage map of the manipulator in 3-D with 0.05m resolution
(a), and its top-down view in the x-y plane (b). The spheres in the figures
represent poses that are reachable by the manipulator. In particular, the red
spheres are used to compute the Ci (the yellow circle in (b)) that are within
the two parallel slabs (the gray planes in (a)) defined by the vertical height of
the target drawing path. The black circle in (b) represents the mobile base’s
bounding circle Bi, and the magenta arrow represents the heading of the
mobile base.

continuously switch the robot poses from one coverage to
another coverage, which yields the entire robot path ξ.

B. Discretization and Reduction

In order to simplify the problem, we first introduce the
notion of coverage map. The coverage map M for a robot
R with reachability LR is defined as a set of points that are
reachable by the end-effector of R when the base frame of
R is fixed at pbase ∈ SE(2); i.e., the configuration space C
in Eq. 4 is restricted to pbase × R7. The coverage map is
bounded and sometimes called the reachability map in the
literature [52], [53]. In practice, the map is pre-computed by
discretizing both the configuration and the workspaces. In our
case, we construct the coverage map as follows:

1) Discretize the Cartesian workspace in R3 with {pd}.
2) Discretize the configuration space in SO(3) with {rd}.
3) For each pd, if LR(pbase×R7)(⟨pd, rd⟩) = 1 for all rd

using either forward kinematics or inverse kinematics,
then add pd to M.

Fig. 6 shows the resulting coverage map M of our robot,
where the green spheres correspond to each element in M.
Note that M is a discretized version of Ci when the base
frame is fixed.

In general, the geometry of Ci may be highly non-convex,
and may contain holes due to kinematic limits [52]. Even
though a simple geometric primitive like a sphere may not
closely approximate the complicated geometry Ci, we nonethe-
less opted for the sphere to approximate the geometry due to its
simplicity, which will in turn ease the burden of reachability
checking—the spherical approximation of Ci using M can
quickly find reachable points on the target surface.

We also reduce the coverage dimension in Problem 2 from
3-D to 2-D by assuming a certain geometric characteristic of
the target surface. We assume that the geometry of our target
canvas is a surface of extrusion (e.g., see Fig. 8)—the surface
is vertically extruded along the z-axis from a 2-D planar curve

(i.e., the profile curve) defined in the x-y plane. Thus, because
the geometric characteristics of the target surface still pertain
to the 2-D profile curve (or the 2-D projection of the surface),
we can effectively project the spherical coverage of Ci in 3-
D to a circle in 2-D. We also use another circle in 2-D to
bound the mobile base, Bi, which will be used in checking
collisions with the canvas. The use of the bounding circle Bi
not only allows the mobile base to remain collision-free, but
also compensates for the area that is unreachable due to the
spherical approximation of the geometry of Ci. Similarly, the
target drawing path S is also projected from 3-D to a 2-D
point set S ′ ⊂ R2.

Now, our path coverage problem in 2-D can be stated as
follows:

Problem 3 (Circular Path Coverage): Given a finite point set
S ′ in 2-D that approximates the drawing path, find a minimal
number of coverage circles Ci such that their union covers S ′:

min

{
n | S ′ ⊂

n⋃
i=1

Ci, S ′ ∩
n⋃

i=1

Bi = ∅

}
, (6)

where Bi denotes the circle bounding the robot’s mobile base
relevant to Ci.

1) Computing Ci and Bi: A simple method is employed to
decide the geometry of the circles that represent the coverage
candidates Ci and the mobile base Bi in 2-D, as well as
to determine the inter-center distance d between Ci and Bi
(Fig. 6(b)). First, from the pre-computed geometric distribution
of cells in M, we observe the following results:

• The overall discrete geometry of M is similar to a
spherical shell, where the inner shell corresponds to the
area that is unreachable by the manipulator.

• We orient the mobile base in such a way that the drawing
occurs only in the forward-facing direction of the base,
i.e., the x-axis of the base frame. Thus, the main radial
direction of the spherical shell M is aligned with the
x-axis, and its radial extent is bounded.

• We assume that the target drawing path (or the canvas)
has a limited vertical height (along the z-axis). Thus, the
spherical shell is truncated by the slabs defined by the
vertical height.

The projected geometry ofM onto the x-y plane looks like
Fig. 6(b) and, based on the aforementioned observations, we
bound only the first few consecutive rows (the red spheres
in the figure) in the projected M using a circle (the yellow
circle in the figure). These rows are contiguous so that they
correspond to the internals of the spherical shell. Using the
extrema of these rows, as well as the constraint that the circle’s
center is aligned with the x-axis, we determine the circle of Ci.
The circular bound Bi of the mobile base with some safety
offset is also computed (the black circle in the figure); the
inter-center distance d is also obtained from these two circles,
Ci and Bi. Finally, to better approximate the spherical-shell
geometry of M, in the next section, we use Ci − Bi instead
of using just Ci, where “−” is the Boolean difference. In fact,
Eq. 6 encodes this Boolean difference operation. Our method
for finding Ci,Bi is simple, yet conservative and effective in
practice.
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Fig. 7. Two extreme points (red dots) of S′ inside the coverage circle C∗ are
identified. pbase is displaced from the center of C∗ by d, the pre-computed
distance between the centers of two circles, and the orientation of pbase is
normal to the line connecting the extreme points.

Algorithm 1: Greedy Algorithm for Set Cover

Input : S ′: point sets in R2 for the target surface
Output: T = {⟨Pj ,Xj⟩}: tuples of base poses in

SE(2) and covered point sets in R2

1 T ← ∅ ;
2 A set of densely-sampled candidate circles {Ci};
3 while

⋃
Xj ̸= S ′ do

4 C∗ = argmax
C′∈{Ci}

|(S ′ −
⋃
Xj) ∩ C′| ;

5 Find the base pose pbase and its bounding circle
B∗ corresponding to C∗ ;

6 if S ′ ∩ B∗ ̸= ∅ then
7 Xj = C∗ ∩ S ′ ;
8 Pj = pbase;
9 Add Tj = ⟨Pj ,Xj⟩ to T ;

10 end
11 Remove C∗ from {Ci};
12 end

C. Set-Cover Algorithm

Now we solve the combinatorial optimization of Problem 3.
This problem is essentially a set-cover problem, which is
known to be NP-hard [54]. In our case, we rely on a rather
simple but effective approach based on randomization and
greedy algorithms. Moreover, we find the coverage set that
covers the entire target surface, not just the drawing path;
i.e., S ′ in Eq. 6 approximates the target surface. Thus, this
optimization is independent of the drawing input and is pre-
computed in our system. Algorithm 1 summarizes an overview
of our algorithm.

First, we populate the universe of {Ci} by densely random-
sampling the circles in R2 until the union of the sampled
circles covers the target surface (line 2). From among these
candidate circles, we find the circle C∗ that includes the
maximum number of points on the target surface that have not
been covered by the already-chosen circles (line 4). For such
a C∗, the set of all the surface points that are inside the circle
C∗ is X ∗ = C∗ ∩S ′. Then, we find the configuration pbase of
the robot base and its bounding circle B∗ that corresponds to
C∗ (line 5); pbase is calculated by moving in the perpendicular
direction of the line connecting the two extreme points in X ∗

(Fig. 7). After verifying that the robot’s base is collision-free

1.5
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0.5
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1.5

0.5

0.5
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Fig. 8. Three canvas surface models in 3-D (circular, wave, curved) (left
column), and the corresponding path coverage results projected in 2-D (right
column). In the right images, different colored points on the surface represent
the surface area covered by each candidate circle.

from the target surface when the robot is placed at pbase (line
6), we add X ∗ to X , the set of already-covered points. We
repeat this until the union of Xj includes all the target surface
points (line 3). Fig. 8 shows examples for three different target
surfaces.

As a result of Algorithm 1, we obtain a set of tuples
Tj = ⟨Pj ,Xj⟩ consisting of a mobile base pose Pj and
the point set Xj covered by Pj . We then partition the input
drawing points D′ into a subset of points Dj according to the
coverage: i.e., Dj = Xj ∩ D′. Dj is fed into a manipulator,
and the manipulator performs the robotic drawing task using
impedance control (Section VII). The sequence of Pj values
is spatially sorted and fed into the mobile base. Next, a linear
interpolatory motion is employed to navigate from Pj to Pj+1

successively. We repeat the alternation of drawing motion and
mobile base navigation until we traverse the tuple set T .

VII. ROBOTIC DRAWING

Finally, we carry out the drawing task using our robotic
hardware. In this section, we explain how to carry out the
drawing task while maintaining contact with the target surface
using an impedance control manipulator.

A. Impedance-Controlled Drawing

Impedance-controlled robots interact with the environment
by employing a mass-spring-damper-like system that actively
controls the robots [10]. Such a system is well-suited to tasks
in which contact forces should be kept small, whereas the
accurate regulation of contact forces is not mandatory. Thus,
impedance control serves nicely for pen drawing tasks. Using
surface estimation and mapping, our drawing robot is now
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Fig. 9. SSK System Setup. (a) Vector-graphics engine. (b) Robotic drawing system. (c) Drawing simulation.

fully equipped with a set of drawing poses D′ in 3-D that can
be drawn on the target surface. However, to exert the proper,
compliant force at the pen tip (the end-effector), as well as
to compensate for possible estimation and sim-to-real errors,
we adopt the Cartesian impedance control method. Impedance
control is a hybrid, position- and force-controlled method
that was proposed for interaction between a robot and an
unstructured environment [45]. By employing a mass-spring-
damper-like system, impedance control allows a robot to react
in a compliant manner to external obstacles. By considering a
certain offset value (i.e., impedance) for each drawing point,
Cartesian impedance control results in continuous contact with
the surface in a Cartesian space during the entire drawing
session.

The pen-tip attached to the robot manipulator is always
perpendicular to the wall (Eq. 2). We configured the impedance
controller in such a way that the robot is compliant only in
the pen-tip heading direction. Additionally, in order to exert
an appropriate amount of compliant force at the pen-tip, a
small deviation between the target position and the physical
position of the pen-tip needs to be provided to the impedance
controller.

Simply having the set of drawing points D′ = {d′
i =

(pi, ri)|pi ∈ R3, ri ∈ SO(3)} define the target drawing poses
can result in a lack of sufficient pen pressure and may be
very sensitive to surface estimation error. Therefore, the target
position pi of d′

i was modified to:

p′
i = pi − γzni, (7)

where γz is a user-defined gain value that controls the pen
pressure, and −ni is the direction opposite to surface normal,
which is parallel to the z-axis of the pen frame. This deviation
results in a compliant force fz = kγz along the z-axis of
the pen frame where k is the spring stiffness. To be more
efficient, instead of calculating new positions for every d′

i, we
attach a virtual frame V to the physical pen that is aligned
with the pen-tip attached to the end of the pen, except that
V is slightly offset by γz from the pen-tip frame along the
z-direction, which has the same effect as moving the pen-tip
frame to p′

i.
As a result, the pen-type end-effector traces out the position

of spline curves while maintaining contact with the surface,
exerting an almost uniform level of compliant forces. Experi-
mentally, we have chosen the target pen contact force as 2.5N

for geometric error compensation. Our system then repeats to
draw and move to the next coverage using simple local path
planning.

VIII. EXPERIMENTAL RESULTS

In this section, we describe the implementation details and
demonstrate the drawing results of our system. To provide
a drawing result, we use two different types of drawing
inputs: (1) the ones generated using our vector graphics engine
(Racoon, Kangaroo, Bear, and Owl) and (2) inputs downloaded
from Adobe Stock2 in Scalable Vector Graphics (SVG) format
(Dogs, Farm, and Paris). We tested our drawing system on
two types of nonplanar canvases: 1) a circular column wall
captured by an RGB-D camera and reconstructed as a point
cloud (Figs. 10 and 11); and 2) a wavy wooden wall with 3-D
model data (Fig. 12). We placed a thin plastic cover on the
physical canvas surface to preserve it.

A. Implementation Details
As shown in Fig. 9(b), our robotic drawing system consists

of a KUKA LBR iiwa 7 R800 manipulator, equipped with a
3-D-printed pen holder, placed on top of the omnidirectional
mobile platform Ridgeback from Clearpath Robotics. We use
Python and C++ for the programming infrastructure, which
runs on a laptop equipped with Intel i7-10 CPU and 16-
GB RAM. We use Robot Operating System (ROS) Melodic
framework under the Ubuntu 18.04 LTS operating system
to communicate with the robots (sensors). The manipulator
runs under Sunrise OS with a real-time interface provided
by the manufacturer. We use the Samsung Galaxy Tablet PC
to run vector graphics under the Android operating system
and an Intel RealSense ZR300 RGB-D camera to reconstruct
a 3-D point cloud from the target canvas space. We use
HTC VIVE tracker 3.0 with OpenVR3 to localize both the
robot and the target drawing wall. For drawing simulation
and fast prototyping, we use the Gazebo simulator as shown
in Fig. 9(c), with Rviz to visualize the drawing results and
MoveIt! [55] with TRAC-IK [56] inverse kinematics solver for
computing the virtual robot trajectory following the Cartesian
path in the simulated world. To utilize the physical robot, we
use a default planner provided by KUKA Robotics to carry
out the spline motions.

2https://stock.adobe.com/
3https://github.com/ValveSoftware/openvr
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Fig. 10. Drawing results on a bumpy, circular column wall. Starting from the top left, Racoon, Bear, Owl, and Kangaroo, in the clockwise direction.

(a) (b) (c)

Fig. 11. Fractal curve drawing results on a bumpy, circular column wall. The black lines represent the robotic drawing results using conformal mapping,
and the orange lines represent the results using projection mapping. Note that the orange lines are distorted relative to the black lines. (a) Grid with Hilbert
space-filling curve. (b) Sierpiński arrowhead curve. (c) Koch snowflake curve.

B. Robotic Drawing Results

1) Artistic drawing results: Fig. 10 shows the artistic pen
drawing results reproduced on a bumpy circular column wall
using our system. The original drawings are drawn by the artist
using our vector graphics engine, and the target surface data
is reconstructed as a point cloud using the RGB-D camera
while the robot base remains fixed. The point cloud of the
target surface consists of over 172,000 points. Our system
is capable of drawing multiple color drawings by splitting
the drawing tasks into different colored sets: e.g., the Owl
drawing consists of two different colors, black and blue,
in the eyes. However, because our 3-D-printed pen holder
has no tool-change mechanism, we manually change the pen
when switching the drawing task as needed. The drawings use
conformal mapping to map a 2-D drawing to 3-D, except for
the Bear and Owl drawings (marked with a star in Table II),
which use a simple orthographic projection (i.e., projection
mapping).

2) Patterned drawing results: To highlight the effect of
the conformal mapping, we show comparisons between the
results that use conformal mapping and those that use the
projection mapping by drawing fractal curves on a circular
column wall (Fig. 11). Compared with the results for projec-
tion mapping, the conformal mapping reproduces the original
drawing faithfully on the nonplanar surface. On the other hand,
the projection mapping method does not preserve the original
side length, and the length gradually increases as it moves
away from the center of the projection. As can be seen from
the grid pattern results shown in Fig. 11(a), the conformal
mapping preserves the side lengths of the grid, but with the
projection mapping, the length is increased by more than 20%
in the worst case.

3) Large-scale drawing results: Fig. 12 shows the artistic
pen drawing results reproduced on a curved, wooden wall.
The original drawings are SVG images that are translated
to a set of 2-D strokes. The Dogs drawing consists of three
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Fig. 12. Robotic drawing results: Dogs, Farm, Paris, from top to bottom. Original vector graphics image and the images drawn on a physical curved surface.

TABLE II
ROBOTIC DRAWING EXPERIMENTAL STATISTICS

Surface Circular column wall (Fig. 11) Wooden curved surface (Fig. 10)

Drawing Racoon Kangaroo Bear∗ Owl∗ Dogs Farm Paris

Drawing Size (mm) 252× 491 252× 491 252× 491 252× 491 2000× 500 2000× 500 1187× 500
# of Coverage Poses 1 1 1 1 5 5 3

# of Pen Strokes 860 3,147 1,520 1,942 2,634 927 1,318
# of Drawing Points 69,350 80,580 66,910 159,895 25,727 20,787 20,154

Drawing Time (min.) 186 293 221 317 582 494 307

different colors, yellow in some of the eyes, red on the leash,
and black for the rest. The target surface data is modeled as
a polygonal mesh in 3-D. There is a geometric discrepancy
between the 3-D mesh model and the physical wall. We
will discuss this error in Section VIII-D. Nonetheless, by
using impedance control, our system successfully reproduces
artistically-pleasing drawings on a large, nonplanar surface
by compensating for the model discrepancy. The statistics
for the experimental drawings shown in Figs. 10 and 12 are
provided in Table II. The statistics for Fig. 11 are provided

in Table III. They include the drawing size, the number
of drawing strokes and points, and the drawing execution
time. Robotic drawing by our system takes time because we
executed our robot at a low speed, which was only 20% of
the maximum joint velocity, for the safety of both the robot
and any drawing collaborators (i.e., humans). Table II also
includes the number of coverages (i.e., Ci) that are used to
split the drawings. Table III also shows the mapping time to
parameterize the surface and then to map the drawing using
the method described in Section V.
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TABLE III
CONFORMAL MAPPING AND DRAWING EXPERIMENTAL STATISTICS

Drawing Grid Arrowhead Snowflake

Drawing Size (mm) 384× 216 432× 216 384× 192
# of Pen Strokes 95 12 12

# of Drawing Points 6,930 2,360 4,128
Mapping Time (sec.) 635 308 523
Drawing Time (min.) 54 14 19

TABLE IV
SURFACE SET COVER EXPERIMENTAL STATISTICS

Surface Circular Wave Curved

Dimension (cm3) 260× 30× 200 290× 20× 170 260× 15× 180
# of Vertices 98 194 752

# of Faces 96 192 750
Set Cover (sec.) 2.674 8.677 378.241

C. Set-Cover Results

Fig. 8 shows three different nonplanar surfaces and the
coverage-problem results using the greedy algorithm presented
in Section VI-C. Table IV shows the geometric information
for the surfaces and the computational performance of our
algorithm for each case. The first row shows the physical
dimension of the surface model. The second and the third
rows show the number of vertices and the faces in the
geometric model of the surface. The last row is the coverage-
problem solution time using our greedy algorithm. Our greedy
algorithm has a time complexity of O(mn), where m and n
represent the number of points comprising the target surface
S ′ and the number of candidate circles Ci, respectively, and
takes only 0.001% of the entire robotic drawing process time.

D. Discussion Concerning Error

In our system, there exist different sources of error that are
attributed to surface deviation, coverage approximation, and
localization. Because these errors can affect the quality of the
final drawing results, in the following, we address how we
compensate for the errors in our system.

1) Surface deviation: We reconstruct the canvas surface
automatically using an RGB-D camera or manually using geo-
metric modeling software. In both cases, there may exist some
discrepancy between the physical and the geometric models.
This type of surface deviation, up to 5cm in our experiment,
was successfully managed with the use of impedance control,
as explained in Section VII.

To further validate the robustness of impedance-controlled
drawing, we designed an experiment where we asked the robot
to draw a 7×7 square grid, as shown in Fig. 13(a) on a hemi-
sphere that was provided as a target surface geometry to the
robot. However, the actual hemispheric surface was perturbed
by 3.5% of the Hausdorff metric [57] relative to the size of
the hemisphere and was 3-D-printed as shown in Fig. 13(b).
Without knowing this change, the robot attempts to draw the
grid on the modified hemisphere. We measured how much
the two geometric quantities of each grid deviated from the
original hemisphere: 1) the 1-1 aspect ratio of the four sides;
and 2) the right angles of the corners. In our experiments, the

(a) Target input drawing on a half-sphere

(b) Real robot drawing result on a distorted half-sphere

Fig. 13. Grid drawing experiment result on a half-sphere to show the
effectiveness of the impedance control. Whereas the target drawing path
is mapped on a clean half-sphere, the physical drawing is performed on a
distorted half-sphere.

robot successfully drew the grid, and the relative deviations
of the aspect ratio and the corner angles were measured as
3.0% and 4.4%, respectively. These deviations show a rate of
changes similar to that of the 3.5% surface deviation, thanks
to the impedance control scheme.

2) Coverage approximation: We made a few assumptions
to approximate the set-cover problem in Section VI-B. First,
we reduce the problem dimension from 3-D to 2-D by
assuming that the canvas-surface geometry is a surface of
extrusion. Based on this assumption, we find a set of coverage
circles, which yields a sub-optimal solution for the coverage
problem. Our greedy set-cover algorithm adds to the sub-
optimality. However, the result is still conservative, meaning
that we can draw all the strokes with a slightly higher number
of robot-base placements. Second, the manipulator coverage
map is discretized and pre-computed. This only guarantees
the reachability for a set of fixed drawing poses and not
for the continuous drawing motion between poses. However,
in practice, the discretization resolution of 0.05m shows no
problem in our drawing experiments. The redundancy of the
manipulator also contributes to preventing failure. Finally, the
coverage map can contain topological holes that may not be
accurately approximated by a set of coverage circles. However,
we can avoid reaching the holes by conservatively choosing
the size of the coverage circles slightly larger.

3) Localization error : Our drawing system uses IR track-
ing devices to localize the mobile base as well as to locate
the canvas. As demonstrated in [58], the IR tracking device
(the HTC Vive tracker) that we use for localization has a sub-
millimeter precision. As a result of the robotic drawing experi-
ment, a drawing error due to the localization was unnoticeable
even though it may differ by the contents of the drawing.

IX. CONCLUSION

We have presented an artistic robotic pen-drawing system,
SSK, that generates artistic pen art on large, nonplanar sur-
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faces. We provide a pen interface for the artist to generate
drawing strokes on a 2-D virtual canvas. Our system uses
conformal mapping to project the 2-D drawing onto the 3-D
canvas surface. Our navigation algorithm plans the motion for
the mobile base to cover the large surface using the coverage
map. The robotic drawing is performed using impedance
control. We show a variety of drawing results using our
proposed system. The results demonstrate that our system
successfully brings the digital image into the real world and
is not limited by the canvas size.

A. Limitations and Future Work

There are some limitations that we would like to address
in our future work. Extending our set-cover planning method
to 3-D to generate a more optimal solution is our immediate
interest. One may use a convex polytope instead of a sphere
or a circle to tightly represent coverage geometries [59].
Instead of the greedy algorithm, reformulating the problem
for a mixed-integer program [60] could also be an option for
generating more optimal solutions. Our reachability-based set-
cover algorithm deals with only a discrete set of reachable
poses, which does not guarantee continuous, reachable motion
for a series of poses. Although all the drawing motions
in our experiments were successfully carried out, validating
the feasibility of the motion could be done in future work.
Another interesting future direction is to use robot vision
to reduce the drawing error. Although our drawing result is
visually pleasing, it is difficult to quantify the artistic beauty
reproduced by the robot in an objective manner. As a future
research direction, it would be very interesting to replace the
manual input drawing with an autonomous drawing, possibly
using machine learning, so that our system can be evolved into
a creative machine that generates an art piece by itself [26]
or that collaborates with artists [61]. Finally, our system has
great potential for application with other robotic systems that
perform drawing tasks that require constant contact with a
target surface while following a trajectory, such as robotic
milling, sanding, or mopping.
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